Thursday, 19 December 2013

The Working Of An RGB Laser

By Cornelia White


An RGB laser is that laser that emits three primary colors of light. These are red light, green light and blue light, hence the acronym RGB. These can be produced in a single beam for all the three colors or separate beams for each of the color. Through the process of optical amplification of stimulated emissions of electromagnetic radiations, it is possible to obtain many more colors from these primary colors.

Arc lamp sources are now being replaced with RGB lasers for light emissions, particularly given that they are much better when it comes to performance as compared to the arc lamp beamers. Arc lamp beamers are known to be the cheaper alternatives but they have limited lifetime, poor image quality and impossibility to achieve high wall-plug efficiency.

The success of these lasers has to do with the coherency of wavelengths. They are both coherent in time and space to each other hence the possibility of inferences. The change of phase properties happens at the same time over a long distance making them preferred for entertainment and other professional uses.

The narrow optical bandwidth of the three types of beams produced put them close to monochromatic beams, a property that makes them able to produce very sharp and clear images on color mixing. For this reason, their applications are increasing, not forgetting the use in cathode tubes, lamp based beamers, color printers and many types of projectors.

These beamers however are known to emit beams that are low in power. With cinema projectors requiring over 10 W of power per color, the use of RGB sources is limited. In addition to power insufficiency, there other challenges include maturity and cost effectiveness. There is also a need of better quality of beam for efficient working of these beamers.

External optical modulators are normally used in these types of beamers although RGB sources are fitted with power-modulators for better signals in situations where the optical modulator use is made impossible as a result of low power miniature devices. Laser diodes for instance are used to achieve modulation bandwidth between 10 to 100 megahertz or even much higher resolutions.

The construction of RGB lasers can be achieved in several manners with the most common ones involving the use of three different lasers with each producing one of the three colors. This method of visible beams however comes with several limitations in comparison to the other methods that employ the use of near infrared rays.

When using an infrared solid state laser, a single beam of a near-infrared laser generating a single color is used. This is then converted into the three color under a several stages of converting non-linear frequency. The other common methods include combining parametric oscillators, frequency doublers method and frequency mixer method.

With the technological advancement, better performing RGB laser machines are being produced. With the current attempt to introduce the fourth color in this type of laser, something that will even improve their performers for the better. The expert prediction is that these forms of lasers will be replacing the other forms of beamers.




About the Author:



No comments:

Post a Comment